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Abstract. Second-order reduction factors for spin-orbit coupling in the strongly coupled 
T, @ t 2  Jahn-teller system arecalculated using the symmetry-adaptedexcitedstatesderived 
previously by projection operator methods. The results obtained are found to be much closer 
to the numerical results of O’Brien than those found previously by the authors when a much 
simpler form for the excited states was found. It is also found that the inclusion of anisotropy 
in a simplified form improves the results in the strong coupling limit. 

1. Introduction 

The spectroscopic properties of an ion in a crystal are often conveniently described by 
effective Hamiltonians. An analysis of the electronic parameters appearing in such 
effective Hamiltonians is one of the best ways of observing and identifying Jahn-Teller 
(JT) effects in solids (e.g. Ham 1965,1972, O’Brien 1969, Bates 1978). If the ion-lattice 
coupling is strong, it is well known that first-order JT effects can drastically reduce the 
size of some of the terms that appear in effective Hamiltonians, whilst second-order 
effectsintroduce new terms that can dominate the first-order terms (Ham 1965, Abhvani 
et af 1982, Bates and Dunn 1989). 

The TI orbital states of many magnetic ion impurities in semiconductors are found 
to be examples of strongly coupled JT systems. Hence, it is obviously very important to 
be able to predict theoretically second-order JT reduction factors for orbital triplets. 
However, the calculation of these second-order terms involves coupling to an infinite 
set of excited states. In the case of T (8 e JT systems, such calculations are relatively 
straightforward (Ham 1965). However, in the case of T (8 t2  JT systems, the excited 
states are not generally known and thus there are considerable difficulties in calculating 
accurate expressions for such terms. 

In an earlier paper, the present authors obtained approximate analytical expressions 
for second-order terms in the T (8 t2  problem (Bates and Dunn 1989). The calculation 
was analytical and used states obtained by employing an initial unitary transformation 
followed by an energy minimization procedure. This method is described in Bates et af 
(1987), Dunn (1988) and Dunn and Bates (1989a). In their reduction factor calculations, 
Bates and Dunn (1989) approximated the infinite set of excited states to the set of excited 
simple harmonic oscillator states which occur in the infinite coupling limit. These are 
vibronic states centred on the four potential-energy minima of T 8 t2 JT systems, which 
lie along the trigonal axes in phonon coordinate (Q) space. A much better approximation 
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to the true set of excited states for finite couplings can be obtained by taking linear 
combinations of the infinite coupling states that have cubic symmetry. These states are 
an improvement because their use excludes some of the non-orthogonality present in 
the simpler calculations. Such symmetry-adapted states have now been obtained (Dunn 
1989) and thus the purpose of this paper is to repeat the calculations of Bates and Dunn 
(1989) with this improved form for the excited states. The details that follow are derived 
specifically for TI ions, although results for T2 ions can be seen to have a very similar 
form to those obtained here if the appropriate isomorphic constants are taken into 
account. 

Although there are many calculations, discussions and applications of second-order 
JT reduction factors for T €3 e systems in the literature, the T €3 t 2  systems have rarely 
been mentioned. The only other published calculation of second-order JT reduction 
factors for the T 8 t2  system appears to be the numerical work of O’Brien (1990), which 
uses states based on the weak coupling limit. As the methods of calculation are very 
different in O’Brien’s approach to that given here, a useful cross-check of results can be 
made. 

Details of a much more general approach to the calculation of second-order reduction 
factors for all types of JT systems will be given shortly (Polinger et aI1991). This approach 
shows that the form of the results obtained using our specific method is identical to those 
predicted using symmetry considerations only. 

The calculation of second-order JT reduction factors is necessary to determine the 
details of the effective Hamiltonians that model specific systems. The question also 
arises as to whether second-order reduction factors in T 8 t2 systems may also be useful 
for considerations of Berry’s phase (Berry 1984, Zwanziger and Grant 1987, Chancey 
and O’Brien 1988, O’Brien 1989). So far, the discussions appear to be limited to first- 
order reduction factors. For example, in a very recent paper, Ham (1990) analyses 
the role of Berry’s phase in the T 63 t, JT system and discusses in detail the various 
approximations that have been introduced by different authors in obtaining the ground 
states of that JT system and in the evaluation of first-order reduction factors. It seems 
therefore that a detailed and more accurate analysis of second-order reduction factors 
may also be of relevance in the more general aspects of JT systems as well as in their 
specific role in effective Hamiltonians. 

2. The basis of the analytical method for TI ions 

The basic JT Hamiltonian for a TI (I = 1) ion that is coupled linearly to t2 modes of 
vibration (Q47 Q5,  Q6) of a tetrahedral cluster is 

‘EX= 2 ( v 3  - ~ V , e i r i + - L + - p ~ + Q l )  1 P2 1 
j = 4 , 5 , 6  2 P  2 

where V, is the t2-type ion-lattice coupling constant, Pj is the momentum conjugate to 
Q,, p is the mass and oT the frequency of each of the modes. The z j  are defined by z4  = 
- ( ly l ,  + l z ly ) ,  etc. using the usual orbital basis states x ,  y and 2. The phonon excitation 
modes labelled ‘4’, ‘5’ and ‘6’ transform as ‘yz’,  ‘zx’ and ‘xy’ respectively. 
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In the unitary transformation and energy minimization method developed originally 
by Bates et a1 (1987) and Dunn (1988) for strongly coupled JT systems, a unitary 
transformation 

1 (2.2) 
j =4 .5 .6  

is applied to the Hamiltonian where the ai are free parameters chosen to minimize the 
potential energy in the transformed Hamiltonian. The four wells in Q-space are labelled 
by the index k = 1 to 4 and occur at positions - cuih (given in detail in equation (11) and 
table 1 of Dunn (1988)). The ground state for the well k in the transformed basis is 
written in the form IXbk); 0), and the excited states in the form lXbk); 4'5"6"), where 4' 
denotes the presence of I '4'-type excitations and 

IXL,)) = (l/V3)1 c@x + u ik )y  + O&")Z) 

ab') ay)  = -&I = 1 

- 0 6 3 )  = 4 3 '  = a&3' = 1 

(2.3) 
and where 

ay) = -&) = ($1 = 1 

- 0 i 4 )  = - 4 4 )  = - 4 4 '  = 1. (2.4) 

These states can be transformed back to the original space by multiplying them by 
U = U,, after substitution of the appropriate value for the ai.. The untransformedground 
states are thus 

IXp '  ; 0) = Uk 1Xhk'; 0) 

1Xf)' ; 4'5"6") = U,/Xhk);  4'5"6") 

(2.5) 

(2.6) 

with energies - E T t  + %wT, and the untransformed excited states are 

is the JT energy. For convenience, the orbital components Xhk) will be rewritten in the 
abbreviated form a ,  b ,  c ,  d where a = Xh'), b = XL'), c = Xh3) and d = Xb4). 

In order to obtain a set of approximate eigenstates with cubic symmetry for the 
TI €3 t, system, linear combinations of the states in the four trigonal wells should be 
taken. This lifts the degeneracy of the four ground states in the wells and produces a T I  
triplet and an A2 singlet state. The z-type component of the TI triplet is (Dunn 1988, 
equation (24)) 

IT1,t) = NTt( - la'; 0) + Ib'; 0) + IC'; 0)  - 

and the A2 singlet is (Dunn 1988 equation (30)) 

IA2t) = N A t ( l a ' ;  0) + 16'; 0 )  + I C ' ;  0 )  + Id' 

where 
4N+,(1 + BS,) = 1 and 4Nat(1 - S , )  = 1 (2.10) 

s, = exp[- 9 (KT/huT)']. (2.11) 
with the overlap S, given by 

The energies of the T1 triplet and A, singlet are E T  and E T  + 6 respectively, where 6 is 
the inversion splitting. 
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Cubic combinations of all excited states associated with the trigonal wells have been 
constructed using projection operator techniques. Details of the method, which is 
necessarily more complicated than that for the ground states, are given in Dunn (1989). 
The resultant excited states are written in the form 

IWi(f, m, n ) )  = Ni(Z, m,  n)  Iqi(f, m, n ) )  for i  = 1 to 19 (2.12) 

where the N, are normalizing factors given in equations (4.8)-(4.10) of Dunn (1989). 
The states lqi) are given in table 2 and equation (4.10) of Dunn (1989), and their energies 
E i ( f ,  m, n)  in equation (5.8). The states with i = 1-3 form one set of TI states, and the 
states with i = 4-6 another set. A set of T2  states is formed with i = 7-9, and three pairs 
of E-type states with i = 10,11, i = 12,13 and i = 14,15. A, states are formed with 
i = 16 and A2 states with i = 17,18 and 19. 

3. Second-order reduction factors 

Second-order reduction factors arise from the non-zero matrix elements of a per- 
turbation V between the vibronic ground and excited states. The most important of the 
perturbations is that of spin-orbit coupling AI S .  The operator describing the second- 
order perturbation is then 

n En 

where Po is the projection operator for the ground states IT,xt), IT@), and (T,zt) and 
P, that for excited states of energy E,, relative to the ground states. In Bates and Dunn 
(1989), the excited states were constructed from the set of states 

la ' ;  4'5"6") Ib'; 4'5"6") IC'; 4'5"6") Id' ;  4'5"6"). 

Here, we use the set of states lYi( l ,m,n))  for the P,. As the states of Al and A2 
symmetries are not coupled to the ITlt) ground states by spin-orbit coupling (Polinger 
et a1 1991), they may be excluded from the calculations. 

Our previous results were expressed in terms of the effective Hamiltonian 

where 

E o  = &[31: - 1(1 + I)] 

s,, = s,s, + s,s, 
etc. 

etc. 
(3.3) 

While the above form is very convenient for the display of experimental results, it is not 
so convenient from a theoretical point of view because ( I  - S)*  is made up of components 
of symmetry A l ,  E, T1 and TZ.  It is thus preferable to rewrite the effective Hamiltonian 



Second-order reduction factors for Tl €3 t2 Jahn-Teller systems 10383 

in a form that displays the symmetry components separately. Such a form is (O'Brien 
1990, Polinger et a1 1991) 

X e f f  = A2[Af * S + QBEE(l)E(S) + $BTT(I)T(S) + CI(1 + I)S(S + I)] (3.4) 

where A,  BE, BT and C are the coefficients of terms transforming as T,, E, T, and A,  
respectively and where E ( / )  and T(1) are tensor operators given by 

E(I) = E o  and T(1) = - (1q3) t4  etc. (3.5) 

In general, therefore, there are four independent coefficients needed to describe second- 
order spin-orbit coupling for a T1 ion. Another advantage of using the form (3.4) is that 
it is no longer necessary to have alternative methods of displaying the results as used in 
Bates and Dunn (1989). The relation between the two formsof the effective Hamiltonian 
is given by 

A = -  gb BE = b + $c BT = b + 2d C =  i b  + e  (3.6) 

where b,  c, d and e are given in equation (3.8) of Bates and Dunn (1989). 

4. Calculation of the second-order coefficients 

where 

where the quantities RT1, Rn and RE arise from coupling to excited vibronic states of 
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symmetry TI,  T2 and E respectively. After a considerable amount of algebra, it is found 
that 

RE = -XGo/6 RT1 = -XG1/9 R E  = -XG2/9 (4.4) 

where 

x = 16S:/3(3 + S , )  

and 

The factors gl  to gg are given by the following sums: 
X X 

= m-1 x x  

Initial attempts to evaluate the sums involved in the terms g tog, revealed that, whereas 
the zero coupling limits of g2 to g, were each zero, that for g, was not. It was clear that 
the first excited state / W  ,(loo)) was causing the problem as it was not orthogonal to the 
ground state. It was also considered necessary to orthogonalize it to the other T1 state 
iW4(O10)) to improve the accuracy of the calculation. This was undertaken by the 
Gram-Schmidt orthogonalization procedure so that the first excited state IY 1( 100)) was 
replaced by (Dunn 1989, Appendix A2.2) 

1 % )  = N m J C )  - S o c l Y l )  - S L l W ) )  (4.7) 

where NE is the normalizing factor, and S,, and Sic  are overlaps between the relevant 
states, which are themselves given by 

In the above, the N are normalizing factors; the states are written in both the original 
notation of Dunn (1988) and the improved notation of Dunn (1989). 

On recalculating gl ,  the expected zero coupling limit of zero was obtained. The 
results and those of all the other g-values were used to evaluate the constants A ,  BE, BT 
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Figure 1. Graphs of the reduction factors A ,  B E ,  BT and C plotted as a function of KT/hwT. 
The full curves give the new results using symmetry-adapted excited states and the broken 
curves show the previous results of Bates and Dunn (1989) using simpler excited states. 

and C as a function of KT. These results are shown in figure 1. It was found that, for small 
K T ,  the calculations only needed a few phonon excitations for convergence. More 
excitations were needed for larger values of KT. For example, it was found that no 
difference could be distinguished between the graphs produced by summing up to 
N ( = I  + m + n )  = 40 and 60 over the range of couplings displayed. 

The results of the simpler second-order reduction factor calculations of Bates and 
Dunn (1989) have also been included in figure 1. To do this, it was necessary to relate 
the new parameters to the original second-order reduction factors f l ,  and f b.  The 
necessary relations are 

where 

F, = N$,fA and Fb = N$,fk. (4.10) 

It is clearly seen from the graphs that our revised calculations have significantly reduced 
the maximum/minimum values from those found using our simplistic states (Bates and 
Dunn 1989). 
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Figure 2. The reduction factors calculated here (full curves) compared to the numerical 
results (indicated by marked points) of O’Brien (1990). 

Figure 2 compares the results of our new calculation with the numerical data points 
of O’Brien (1990). (Note that, in the corresponding figure in O’Brien, our preliminary 
results only were incorporated. Our calculations have beem improved here by the 
inclusion of further states in the Gram-Schmidt procedure.) It can be seen from figure 
2 that the maximum/minimum values of the two methods are very similar, but that there 
is a small discrepancy between the values of KT at which these minima/maxima occur. 
(Note that the relation between the KT used here and the K, of O’Brien is K T v 2  = K~.) 

5. Discussion and conclusions 

In this paper, we have used aset of symmetry-adaptedexcited states to obtain expressions 
for second-order reduction factors in TI 8 t2 JT systems. This should be an improvement 
on the results of Bates and Dunn (1989), which were obtained using much simpler states 
applicable to infinite coupling. However, although states of one symmetry are now 
orthogonal to all states of other symmetries, they are still not completely orthogonal to 
states of the same symmetry. This problem was highlighted for the low-energy TI states 
in the last section. However, owing to the nature of the calculations, it is thought that 
the remaining non-orthogonality errors are unlikely to be large, especially in stronger 
couplings. For a discussion on the validity of the cubic states, see Dunn (1989). 
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We suppose that the discrepancies between our results and those of O’Brien in 
the positions of the maxima and minima are due to small errors generated by non- 
orthogonality. This is not surprising because our method was designed for strongly 
coupled systems and is more appropriate for values of KT/hwT above approximately 
unity. However, it should be noted that the calculation of the sums needed in deducing 
numerical values for the parametersgl to gg and hence of A,  BE,  B, and Cis much more 
easily carried out here than in the corresponding numerical work of O’Brien. It has also 
been observed that the calculations of the parameters using the simplistic states are 
closer to the numerical results of O’Brien (1990) than with the symmetry-adapted states 
used here for KT less than about 0.3. This appears to be the result of complete accidental 
cancellation of some of the large components in the sums, which does not arise with the 
cubic states. 

It is also clear that the numerical calculations of O’Brien (1990) for the parameters 
BT and C diverge from our analytical results when KT is very large. From both the simple 
approach of Bates and Dunn (1989), which is reproduced in equation (4.9), and our new 
more accurate results given in equation (4.3), we have 

C = -1/(6ETt) B E = A = O  BT = -1/(3ETt). (5.1) 

These values are each 1.5 times the results given in table 3 of O’Brien (1990). (Note that 
the k2  of O’Brien equals 1.5ETt in units of ti%.) Detailed calculations have shown that 
the origin of this difference is the neglect of ‘anisotropy’ in the analytical calculations 
for the second-order reduction factors. Anisotropy has been added to the analytical 
calculations for the effective frequencies of the oscillators and to the calculations of the 
first-order reduction factors in Dunn and Bates (1989a). However, its inclusion in the 
second-order factors leads to very complex algebra, as there are many contributions 
even in second-order perturbation theory. Nevertheless, it has been established that 
many of the terms involved in the calculation of the effective oscillator frequencies when 
anisotropy is present also appear in the calculation of the second-order reduction factor 
calculations. For a general value of the coupling constant VT, Dunn and Bates (1989a) 
find that the oscillator frequencies consist of a singlet wT and a doublet weff. In the infinite 
coupling limit, they show that weff = wTd(2/3) in agreement with all other calculations. 
The second-order reduction factors above all involve En, which is proportional to 
l / w t .  In view of the details noted above, it is logical therefore in very large coupling to 
replace wT in the expressions (5.1) above by weff = wTd(2/3). This brings the results 
(5.1) into coincidence with those derived by O’Brien (1990). 

It is relevant here to note also that the detailed analytical calculations of the energies 
of the symmetry-adapted excited states ( D u m  1989) give an energy level diagram (see 
figure 2) that possesses the required pattern and degeneracies of energy levels. These 
excited states are then used to produce the results described above. 

Even though the use of excited states of cubic symmetry has reduced the size of the 
second-order terms compared to those obtained earlier using simplistic states, it is clear 
that their contributions to the effective Hamiltonian dominate the first-order terms for 
KT > 1.0. The closeness of our results to the numerical work of O’Brien (1990) shows 
that our analytical method even without anisotropy, which is relatively straightforward 
to use, gives good results for strongly coupled systems. 

Work is in progress to calculate the second-order reduction factors for the ortho- 
rhombic T @ (e + t2) JT system using symmetry-adapted excited states. These results 
are of interest because the original work of Dunn and Bates (1989b) gave much smaller 
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values for the reduction factors in this system than the corresponding ones in the T 8 t, 
system. Although the T 63 (e + t2) results will not be directly comparable with those of 
O’Brien (1990) for the T 8 d system, their magnitudes are expected to be similar. 

The only other analytical approach used in the study of T63 t2  JT systems would 
appear to be that of CGte and Clerjaud (1990). They also concentrate on the strong 
coupling regime but use a method that is very different from our own. They calculate 
inversion splittings and first-order reduction factors, and obtain results that are in good 
agreement with other calculations. 

It is relevant here to widen the discussion further in response to some comments by 
Ham (1990) on the nature of various approximations used in the modelling of vibronic 
systems. The approximations frequently made use localized oscillations in displaced 
minima in the potential surface. These ‘crude’ adiabatic approximations were developed 
by Bersuker (1962) and Judd (1974) and in the transformation method of Bates and 
Dunn 1989, Dunn 1988, Batesetall987. However, the calculationsfrequentlygo beyond 
the ‘crude’ approximation because kinetic energy terms are included. For example, in 
the calculation of the reduction factors by the transformation method (Bates and Dunn 
1989, Dunn and Bates, 1989b), the kinetic energy term contributes to the states used in 
their calculation. Thus the departure of the first-order factor such as K‘(T,) from an 
actual ‘zero’ in the strong coupling limit (as quoted by Ham (1990)) for the T 63 t2 
problem using the transformation method may be attributed to the kinetic energy 
corrections. Also, independent calculations by a number of authors (Lister and O’Brien 
1984, Caner and Englman 1966, Sakamoto 1984) show that the first-order reduction 
factor K‘(T,) approaches the limiting value of $ from below that value rather than from 
above. This same result was found in the transformation method when the term %,, 
which also gives rise to anisotropy, was included in the calculation. Even though Berry’s 
phase has not been included explicitly in the transformation method because of the 
nature of the problem, the transformation method represents the only reliable analytical 
method available for intermediate to strong coupling strengths. 
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